
0/49

JJ
II
J
I

Back

Close

Rails Application Optimization
Techniques & Tools

Stefan Kaes
www.railsexpress.de

skaes@gmx.net

http://www.railsexpress.de
mailto:skaes@gmx.net

1/49

JJ
II
J
I

Back

Close

A tiny piece of history

2/49

JJ
II
J
I

Back

Close

Performance Tuning
• Trying to improve performance without measuring is foolish.

• If your app’s design has an inherent performance problem,
you will need a costly redesign.

• Planning ahead for an established performance goal will
help you cut down on the cost of performance improvement
work.

• There’s no need to optimize every page of your web app.

• Focus on your app’s hot spots (frequently visited pages),
and measure continuously during development.

3/49

JJ
II
J
I

Back

Close

Performance Parameters

Latency
How fast can you answer a request?

Throughput
How many requests can you process per second?

Utilization
Are your servers/components idle most of the time?

Cost Efficiency
Performance per unit cost

Compute mean, min, max, standard deviation (if applicable)

Standard deviation will tell you how reliable your data is.

4/49

JJ
II
J
I

Back

Close

Benchmarking Tools
• Rails log files (debug level ≥ Logger::DEBUG)

• Rails Analyzer Tools(requires logging to syslog)

• Rails benchmarker script (script/benchmarker)

• Tools provided by DB vendor

• Apache Bench (ab or ab2)

• httperf

• railsbench

– downloadable from http://rubyforge.org/projects/railsbench/

http://rubyforge.org/projects/railsbench/

5/49

JJ
II
J
I

Back

Close

railsbench
measures raw performance of Rails request processing

configured through

• benchmark definitions
$RAILS ROOT/config/benchmarks.yml

• benchmark class configuration
$RAILS ROOT/config/benchmarks.rb

stores benchmark data in

$RAILS PERF DATA

indexed by date and benchmark name

uses additional Rails environment benchmarking

6/49

JJ
II
J
I

Back

Close

railsbench usage
perf run 100 "-bm=welcome options" [data file]

run 100 iterations of benchmark with given options, print data

perf diff 100 "-bm=all opts" "opts1" "opts2" [file1] [file2]

run 100 iterations of benchmark, print data comparing opts1 and
opts2

perf times data file 1 ...

print performance data contained in files

perf comp [-narrow] data file 1 data file 2

print comparison of raw data files

7/49

JJ
II
J
I

Back

Close

railsbench options
-log[= level]

turn on logging (defaults to no logging). optionally override log
level.

-nocache
turn off Rails caching

-path
exit after printing $:

-svlPV
run test using Ruby Performance Validator

-patched gc
use patched GC

8/49

JJ
II
J
I

Back

Close

Ruby Profiling Tools
• Ruby Profiler

• Zen Profiler

• rubyprof

• Rails profiler script

• Ruby Performance Validator (commercial, Windows only)

All but the last are pretty much useless for Rails performance work.

railsbench has builtin support for RPVL:

run_urls 100 -svlPV -bm=welcome ...

will start RPVL and run the named benchmark with given options

http://www.softwareverify.com/rubyPerformanceValidator/index.html

9/49

JJ
II
J
I

Back

Close

Top Rails Performance Problems
Depends on who you ask, but these are my favorites:

• slow helper methods

• complicated routes

• associations

• retrieving too much from DB

• slow session storage

Judging from my experience, DB performance is usually not a
bottleneck.

Instantiating ActiveRecord objects is more expensive.

10/49

JJ
II
J
I

Back

Close

Available Session Containers
In Memory

Fastest, but you will lose all sessions on app server crash/restart. Restricted to
1 app server process. Doesn’t scale.

File System
Easy setup. One file (below /tmp) for each session. Scales by using NFS or
NAS (beware 10K active sessions!). Slower than

Database/ActiveRecordStore
Easy setup (comes with Rails distribution). Much slower than

Database/SQLSessionStore
Uses ARStore session table format. But does all processing using raw SQL
queries. Needs tweaking if you want additional fields on session entries. setup

memcached
Slightly faster than SQLSessionStore. Presumably scales best. Very tunable.
Automatic session cleaning. Harder to obtain statistics. setup

DrbStore
Can be used on platforms where memcached is not available. Slower than
memcached. No automatic expiry (but could be added quickly).

11/49

JJ
II
J
I

Back

Close

Cachable Elements
Pages

Fastest. Complete pages are stored on file system. Web server
bypasses app server for rendering. Scales through NFS or NAS.
Problematic if your app requires login.

Actions
Second fastest option. Caches the result of invoking actions on
controllers. User login id can be used as part of the storage key.

Fragments
Very useful for caching small fragments (hence the name) of
HTML produced during request processing. Can be made user
aware.

Action caching is just a special case of fragment caching.

Several storage containers are available for fragment caching.

12/49

JJ
II
J
I

Back

Close

Storage Options for Fragment Caching
In Memory

Blazing speed! If your app is running fast enough with 1 app
server process, go for it!

File System
Reasonably fast. Expiring fragments using regular expressions
for keys is slow.

DrbStore
Comparable to FileStore. Expiring fragments is faster.

memcached
Faster and more scalable than DrbStore. Doesn’t support
expiring by regular expression.

The size of the actual code in Rails to handle caching is small.

It would be easy to extend so that all of the above options can be
used concurrently.

13/49

JJ
II
J
I

Back

Close

ActionController Issues

Components

I suggest to avoid components. I haven’t found any good use for
them, yet.

Each embedded component will be handled using a fresh request
cycle.

Can always be replaced by helper methods and partials.

Filters

If you are using components, make sure you don’t rerun your filters
n times. Better pass along context information explicitely.

You can use the skip_filter method for this. It will be evaluated
at class load time, so no runtime overhead during request
processing.

14/49

JJ
II
J
I

Back

Close

ActionView Issues

Instance variables

For each request, one controller instance and one view instance will
be instantiated.

Instance variables created during controller processing will be
transfered to the view instance (using instance_variable_get
and instance_variable_set)

So: avoid creating instance variables in controller actions, which will
not be used in the view (not always possible, see filters).

15/49

JJ
II
J
I

Back

Close

Slow Helper Methods
Consider:

1 pluralize (n, ’post’)

This will create a new Inflector instance, and try to derive the correct
plural for ’post’. This is expensive. Just do

1 pluralize (n, ’post’ , ’posts’)

16/49

JJ
II
J
I

Back

Close

link to and url for
Due to the route generation involved, url for and link to are
among the slowest helper methods around.

1 <%= link to ”look here for something interesting” ,
2 { :controller => ”recipe”, :action => edit, :id => @recipe.id },
3 { :class => ” edit link ” } %>

• both hash arguments undergo heavy massage in the Rails bowel: symbolizing,
html escaping, sorting, validation

• the routing module determines the shortest possible route to the controller,
action and id

A much more efficient way to write this is:

<a href="/recipe/edit/<%=#{recipe.id}%>" class="edit_link">
look here for something interesting

17/49

JJ
II
J
I

Back

Close

ActiveRecord Issues
Accessing AR objects via association proxies is (comparetively) slow.

You can prefetch associated objects using :include

1 class Article
2 belongs to :author
3 end
4 Article . find (:all , :include => :author)

Use piggy backing for has_one or belongs_to relations.

1 class Article
2 piggy back :author name, :from => :author, :attributes => [:name]
3 end
4 article = Article . find (:all , :piggy => :author)
5 puts article .author name

Field values are retrieved from the DB as strings (mostly).

Type conversion happens on each access.

=⇒ cache converted values, if you use them several times during one request.

http://railsexpress.de/blog/articles/2006/05/29/simpler-piggy-backing

18/49

JJ
II
J
I

Back

Close

Caching Column Formatting
Computationally expensive transformations on AR fields can be
cached (in the DB, using memcached, a DRb process)

Example: textilize

• I’ve analyzed an application, where 30% CPU was spent on
textilizing. Another 30% were spent on GC. And about 10% on
URL recognition.

• Caching the formatted fields in the DB eliminated the textilize
overhead completely.

At one point in time a plugin existed for this task.

http://www.agilewebdevelopment.com/plugins/show/10

19/49

JJ
II
J
I

Back

Close

Ruby’s Interpreter is Slow
• no byte code, no JIT, interprets ASTs directly

• doesn’t perform any code optimization at compile time:

– method inlining
– strength reduction
– constant propagation
– common subexpression elimination
– loop invariant detection
– loop unrolling

=⇒
Performance aware Ruby programming can increase
performance significantly!

20/49

JJ
II
J
I

Back

Close

Complexity of Ruby Language Elements
Local Variable access: O(1)

index into array, computed at parse time

Instance Variable Access: expected O(1)
hash access by literal

Method Call: expected O(1)

• hash access to determine literal value ("f"⇒ :f)
• method search along inheritance chain
• hash accesses to get the method
• there’s also a method cache (which helps a bit)
• construction of argument array on heap (unless attr reader)

Recommendation:

• don’t add method abstractions needlessly

• use attr accessors as external interfaces only

• use local variables to short circuit repeated hash accesses

21/49

JJ
II
J
I

Back

Close

Avoiding Repeated Hash Access
1 def submit to remote(name, value, options = {})
2 options[:with] ||= ’Form.serialize(this .form)’
3 options[:html] ||= {}
4 options[:html][:type] = ’button’
5 options[:html][:onclick] = ”#{remote function(options)}; return false ; ”
6 options[:html][:name] = name
7 options[:html][:value] = value
8 tag(” input” , options[:html], false)
9 end

This code is both simpler and faster:

1 def submit to remote(name, value, options = {})
2 options[:with] ||= ’Form.serialize(this .form)’
3 html = (options[:html] ||= {})
4 html[:type] = ’button’
5 html[:onclick] = ”#{remote function(options)}; return false ; ”
6 html[:name] = name
7 html[:value] = value
8 tag(” input” , html, false)
9 end

22/49

JJ
II
J
I

Back

Close

Caching Data in Instance Variables
If you need the same data structure repeatedly during request
processing, consider caching on controller (or view) instance level.

Turn

1 def capital letters
2 (”A” .. ”Z”). to a
3 end

into

1 def capital letters
2 @capital letters ||= (”A” .. ”Z”). to a
3 end

23/49

JJ
II
J
I

Back

Close

Caching Data in Class Variables
If your data has a reasonable size to keep around permanently and
is used on a hot application path, consider caching on class level.

Turn

1 def capital letters
2 (”A” .. ”Z”). to a
3 end

into

1 @@capital letters = (”A” .. ”Z”). to a
2

3 def capital letters
4 @@capital letters
5 end

the cached value could be a query from the database, e.g. guest
user account.

24/49

JJ
II
J
I

Back

Close

Coding Variable Caching Efficiently
Turn

1 def actions
2 unless @actions
3 # do something complicated and costly to determine action’s value
4 @actions = expr
5 end
6 @actions
7 end

into

1 def actions
2 @actions ||=
3 begin
4 # do something complicated and costly to determine action’s value
5 expr
6 end
7 end

25/49

JJ
II
J
I

Back

Close

Defining Constants vs. Inlining
Less than optimal:

1 def validate find options (options)
2 options.assert valid keys(:conditions , :include , :joins , :limit , :offset ,
3 :order , :select , :readonly, :group, :from)
4 end

Better:

1 VALID FIND OPTIONS = [
2 :conditions , :include , :joins , :limit ,
3 :offset , :order , :select , :readonly, :group, :from]
4

5 def validate find options (options)
6 options.assert valid keys(VALID FIND OPTIONS)
7 end

Faster and much easier to customize.

26/49

JJ
II
J
I

Back

Close

Local Variables are Cheap
Consider:

1 sql << ” GROUP BY #{options[:group]} ” if options[:group]

vs.

1 if opts = options[:group]
2 sql << ” GROUP BY #{opts} ”
3 end

or

1 opts = options[:group] and sql << ” GROUP BY #{opts} ”

Alas,

1 sql << ” GROUP BY #{opts} ” if opts = options[:group]

won’t work, because matz refused to implement it (at least last time I asked for it).

http://blade.nagaokaut.ac.jp/cgi-bin/vframe.rb/ruby/ruby-core/6684?6507-6830

27/49

JJ
II
J
I

Back

Close

Beware Variable Capture When Defining
Methods
Defining a new method passing a block, captures the defining environment.

This can cause memory leaks.

1 def define attr method(name, value=nil, &block)
2 sing = class << self; self ; end
3 sing.send :alias method, ” original #{name}”, name
4 if block given?
5 sing.send :define method, name, &block
6 else
7 # use eval instead of a block to work around a memory leak in dev
8 # mode in fcgi
9 sing.class eval ”def #{name}; #{value.to s.inspect}; end”

10 end
11 end

It’s usually preferable to use eval instead of define_method, unless you need
the variable capture.

28/49

JJ
II
J
I

Back

Close

Be Careful w.r.t. Logging
• set the production log level to something other than DEBUG.

• don’t log to log level INFO what should be logged to DEBUG.

This is a bad idiom:

1 logger.debug ”args: #{hash.keys.sort.join (’ ’)}” if logger

hash.keys.sort.join(’ ’) will be evaluated and the arg string will be
constructed, even if logger.level == ERROR.

Instead do this:

1 logger.debug ”args: #{hash.keys.sort.join (’ ’)}” if logger && logger.debug?

29/49

JJ
II
J
I

Back

Close

ObjectSpace.each object
Contrary to popular belief

1 ObjectSpace.each object(Class) {|c| f(c) }

is just as slow as

1 ObjectSpace.each object {|o| o.is a?(Class) && f(o) }

In both cases, every object on the heap is inspected!

Don’t call it in production mode on a per request basis.

BTW: ObjectSpace.each object has dubious semantics

30/49

JJ
II
J
I

Back

Close

Ruby’s Memory Management
• designed for batch scripts, not long running server apps

• tries to minimize memory usage

• simple mark and sweep algorithm

• uses malloc to manage contiguous blocks of Ruby objects (Ruby
heap)

• complex data structures:

– only references to C structs are stored on Ruby heap
– comprises strings, arrays, hashes, local variable maps,

scopes, etc.

• eases writing C extensions

Current C interface makes it hard to implement generational GC

=⇒ unlikely to get generational GC in the near future

Maybe Ruby2 will have it (but Ruby2 is a bit like Perl6)

31/49

JJ
II
J
I

Back

Close

Why Ruby GC is suboptimal for Rails
ASTs are stored on the Ruby heap and will be processed on each
collection

usually the biggest part of non garbage for Rails apps

Sweep phase depends on size of heap, not size of non garbage

can’t increase the heap size above certain limits

More heap gets added, if

size of freelist after collection < FREE_MIN

a constant defined in gc.c as 4096

200.000 heap slots are a good lower bound for live data

for typical Rails heaps, 4096 is way too small!

32/49

JJ
II
J
I

Back

Close

Improving GC Performance
Control GC from the Rails dispatcher:

1 # excerpt from dispatch. fcgi
2 RailsFCGIHandler.process! nil, 50

Will disable Ruby GC and call GC.start after 50 requests have been
processed

However, small requests and large requests are treated equally

• heap could grow too large

• performance for small pages suffers

• Ruby will still deallocate heap blocks if empty after GC

33/49

JJ
II
J
I

Back

Close

Patching Ruby’s Garbage Collector
Download latest railsbench package. Patch Ruby using file
rubygc.patch, recompile and reinstall binaries and docs.

Tune GC using environment variables

RUBY HEAP MIN SLOTS
initial heap size in number of slots used (default 10000)

RUBY HEAP FREE MIN
number of free heap slots that should be available after GC (default 4096)

RUBY GC MALLOC LIMIT
amount of C data structures (in bytes) which can be allocated without triggering
GC (default 8000000)

Recommended values to start with:

RUBY_HEAP_MIN_SLOTS = 600000
RUBY_GC_MALLOC_LIMIT = 60000000
RUBY_HEAP_FREE_MIN = 100000

Running the previous benchmark again, gives much nicer GC stats

34/49

JJ
II
J
I

Back

Close

Compile Time Template Optimization
Many helper calls in Erb templates can be evaluated at template
compile time.

<%= end_form_tag %> ===> </form>

It’s a complete waste to do it over and over again on a per request
basis
For some calls, we know what the output should be like, even if we
don’t have all arguments available

<%= link_to "Edit",
{:controller => "recipe", :action => edit, :id => @record},
{:class => "edit_link"} %>

could be replaced by

<a href="/recipe/edit/<%= @record.to_param %>"
class="edit_link">Edit

35/49

JJ
II
J
I

Back

Close

Rails Template Optimizer

Uses Ryan Davis’ ParseTree package and ruby2ruby class

Retrieves AST of ActionView render method after initial compilation

Transforms AST using

• helper method inlining

• dead code removal

• unused variable removal (from partials)

• hash merging

• constant evaluation

• strength reduction

• constant call evaluation

• symbolic evaluation

until AST cannot be simplified further

Compiles new AST into optimized render method using eval

36/49

JJ
II
J
I

Back

Close

Optimizer Customization

TemplateOptimizer::INLINE_CALLS.merge(...)

TemplateOptimizer::EVALUATE_CALLS.merge(...)

TemplateOptimizer::EVALUATE_CONSTANTS.merge(...)

TemplateOptimizer::IGNORED_METHODS.merge(...)

TemplateOptimizer::CALLS_RETURNING_STRINGS.merge(...)

Optimizer Restrictions

url hashes cannot be optimized if the hash domain isn’t constant

if your app hosts several domains, url hashes cannot be optimized if
:only_path => false gets passed

37/49

JJ
II
J
I

Back

Close

Optimizer Performance Benchmark

Run this morning (1000 -bm=uncached -mysql session . . .):

page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
1: 22.52100 6.80167 44.4 147.0 22.52 6.80 3.31
2: 39.61467 6.86433 25.2 145.7 39.61 6.86 5.77
3: 40.67167 6.43267 24.6 155.5 40.67 6.43 6.32
4: 33.89600 5.80767 29.5 172.2 33.90 5.81 5.84

all: 136.70333 25.90633 29.3 154.4 34.18 6.48 5.28

GC: c1 real c2 real c1 #gc c2 #gc c1 gc% c2 gc% c1/c2
11.06067 2.91533 50.0 20.0 8.09 11.25 2.50

What do you say?

;-)

Project Status: α

Licensing: undecided

38/49

JJ
II
J
I

Back

Close

End
Thanks very much for your attention.

If you appreciated this session, you might consider buying my book,
available early next year from Addison Wesley, as part of the
”Professional Ruby” series.

Questions?

39/49

JJ
II
J
I

Back

Close

ActiveRecordStore vs.
SQLSessionStore
page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
1: 2.80733 1.14600 356.2 872.6 2.81 1.15 2.45
2: 3.91667 1.33867 255.3 747.0 3.92 1.34 2.93
3: 5.21367 1.94300 191.8 514.7 5.21 1.94 2.68
4: 5.65633 2.41167 176.8 414.7 5.66 2.41 2.35
5: 11.64600 7.39600 85.9 135.2 11.65 7.40 1.57
6: 16.83333 15.10933 59.4 66.2 16.83 15.11 1.11
7: 17.09333 15.52067 58.5 64.4 17.09 15.52 1.10
8: 8.19267 6.78133 122.1 147.5 8.19 6.78 1.21

GC: c1 real c2 real c1 #gc c2 #gc c1 gc% c2 gc% c1/c2
3.83667 2.76133 25.0 20.0 5.38 5.35 1.25

Additional details regarding SQLSessionStore and memcached can be found here:

http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store

http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-
session-storage

http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage

40/49

JJ
II
J
I

Back

Close

Configuring Rails to use
SQLSessionStore with Mysql/Postgres
Download latest version from my web site

Put Ruby source under lib directory.
Adjust environment.rb:

1 require ’ sql session store ’
2 ActionController::CgiRequest::DEFAULT SESSION OPTIONS.update(
3 :database manager => SQLSessionStore)
4

5 require ’mysql session’
6 SQLSessionStore.session class = MysqlSession

For Postgres, use
1 require ’postgresql session’
2 SQLSessionStore.session class = PostgresqlSession

Note: requires Postgres 8.1!

http://railsexpress.de/downloads/sql_session_store_0.2.tar.gz

41/49

JJ
II
J
I

Back

Close

memcached Session Storage Setup
Download memcache-client: http://rubyforge.org/frs/?group id=1266

1 require ’memcache’
2 require ’memcache util’
3

4 # memcache defaults, environments may override these settings
5 unless defined? MEMCACHE OPTIONS then
6 MEMCACHE OPTIONS = {
7 :debug => false,
8 :namespace => ’my name space’,
9 :readonly => false

10 }
11 end
12

13 # memcache configuration
14 unless defined? MEMCACHE CONFIG then
15 File .open ”#{RAILS ROOT}/config/memcache.yml” do |memcache|
16 MEMCACHE CONFIG = YAML ::load memcache
17 end
18 end

http://rubyforge.org/frs/?group_id=1266

42/49

JJ
II
J
I

Back

Close

1 # Connect to memcache
2 unless defined? CACHE then
3 CACHE = MemCache.new MEMCACHE OPTIONS
4 CACHE.servers = MEMCACHE CONFIG[RAILS ENV]
5 end
6

7 # Configure the session manager to use memcache data store.
8 ActionController::CgiRequest::DEFAULT SESSION OPTIONS.update(
9 :database manager => CGI::Session::MemCacheStore,

10 :cache => CACHE, :expires => 3600 ∗ 12)

YAML file:

1 production:
2 − localhost:11211
3

4 development:
5 − localhost:11211
6

7 benchmarking:
8 − localhost:11211

Don’t forget to start the server: memcached& Session Container Overview

43/49

JJ
II
J
I

Back

Close

GC Statistics (unpatched GC)

GC data file: c:/home/skaes/perfdata/xp/perf_runworld.gc.txt

collections : 66
garbage total : 1532476
gc time total (sec) : 1.86
garbage per request : 2554.13
requests per collection: 9.09

mean stddev% min max
gc time(ms): 28.08 22.0 15.00 32.00
heap slots : 223696.00 0.0 223696.00 223696.00
live : 200429.88 0.4 199298.00 201994.00
freed : 23266.12 3.3 21702.00 24398.00
freelist : 0.00 0.0 0.00 0.00

44/49

JJ
II
J
I

Back

Close

GC Statistics (patched GC)

GC data file: c:/home/skaes/perfdata/xp/perf_runworld.gc.txt

collections : 5
garbage total : 1639636
gc time total (sec) : 0.64
garbage per request : 2732.73
requests per collection: 120.00

mean stddev% min max
gc time(ms): 148.75 6.0 141.00 157.00
heap slots : 600000.00 0.0 600000.00 600000.00
live : 201288.00 0.2 200773.00 201669.00
freed : 398712.00 0.1 398331.00 399227.00
freelist : 0.00 0.0 0.00 0.00

45/49

JJ
II
J
I

Back

Close

ObjectSpace.each object riddle
Can you explain the output of this script?

1 def f (o)
2 1000.times { Array.new }; 1
3 end
4

5 puts ObjectSpace.each object { }
6

7 f (0)
8

9 puts ObjectSpace.each object { }
10

11 100.times do
12 puts ObjectSpace.each object { |o| f (o) }
13 end

46/49

JJ
II
J
I

Back

Close

config/benchmarks.rb

1 # create benchmarker instance
2

3 RAILS BENCHMARKER = RailsBenchmarkWithActiveRecordStore.new
4

5 # RAILS BENCHMARKER.relative url root = ’/’
6

7 # if your session manager isn’t ActiveRecordStore, or if you don’t
8 # want sesssions to be cleaned after benchmarking, just use
9 # RAILS BENCHMARKER = RailsBenchmark.new

10

11 # create session data required to run the benchmark
12 # customize this code if your benchmark needs session data
13

14 require ’user’
15 RAILS BENCHMARKER.session data = {:user id => 23}
16

47/49

JJ
II
J
I

Back

Close

config/benchmarks.yml
default:

uri: /

all: default, empty, welcome, cat, letter

empty:
uri: /empty/index
new_session: true

welcome:
uri: /welcome/index
new_session: true

letter:
uri: /rezept/letter/G

cat:
uri: /rezept/cat/Hauptspeise
query_params: page=5

48/49

JJ
II
J
I

Back

Close

Coding link to manually
page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
1: 1.38033 1.36467 724.5 732.8 1.38 1.36 1.01
2: 2.21867 2.32833 450.7 429.5 2.22 2.33 0.95
3: 2.90067 2.92733 344.7 341.6 2.90 2.93 0.99
4: 2.87467 2.77600 347.9 360.2 2.87 2.78 1.04
5: 11.10467 7.63033 90.1 131.1 11.10 7.63 1.46
6: 12.47900 6.38567 80.1 156.6 12.48 6.39 1.95
7: 12.31767 6.46900 81.2 154.6 12.32 6.47 1.90
8: 11.72433 6.27067 85.3 159.5 11.72 6.27 1.87

GC: c1 real c2 real c1 #gc c2 #gc c1 gc% c2 gc% c1/c2
6.48867 3.16600 43.0 23.0 11.38 8.76 1.87

• the relation c1/c2 depends on the hardware used. This seems to indicate that
the quality of the Ruby implementation / OS memory management has a
significant influence on relative performance.

• you probably shouldn’t manually code every link_to. just use this method on
pages with a large number of links. (Or wait for my template optimzer :-)

49/49

JJ
II
J
I

Back

Close

Measuring GC Performance Using
railsbench

perf_run_gc n "-bm=benchmark . . ." [data f ile]

runs named benchmark, producing a raw data file

perf_times_gc data f ile

prints a summary for data in raw data file

	
	Performance Tuning
	Performance Parameters
	Benchmarking Tools
	railsbench
	railsbench usage
	railsbench options
	Ruby Profiling Tools
	Top Rails Performance Problems
	Available Session Containers
	Cachable Elements
	Storage Options for Fragment Caching
	ActionController Issues
	ActionView Issues
	Slow Helper Methods
	link_to and url_for
	ActiveRecord Issues
	Caching Column Formatting
	Ruby's Interpreter is Slow
	Complexity of Ruby Language Elements
	Avoiding Repeated Hash Access
	Caching Data in Instance Variables
	Caching Data in Class Variables
	Coding Variable Caching Efficiently
	Defining Constants vs. Inlining
	Local Variables are Cheap
	Beware Variable Capture When Defining Methods
	Be Careful w.r.t. Logging
	ObjectSpace.each_object
	Ruby's Memory Management
	Why Ruby GC is suboptimal for Rails
	Improving GC Performance
	Patching Ruby's Garbage Collector
	Compile Time Template Optimization
	End
	ActiveRecordStore vs. SQLSessionStore
	Configuring Rails to use SQLSessionStore with Mysql/Postgres
	memcached Session Storage Setup
	ObjectSpace.each_object riddle
	config/benchmarks.rb
	config/benchmarks.yml
	Coding link_to manually
	Measuring GC Performance Using railsbench

