
Computing Runtime Attributed Call Graphs

and Displaying Call Graphs as Trees

Stefan Kaes
c© 2005 by the Author

Version 0.4

The problem

Suppose we are given a call tree of a program as a graph G0 = (V,E). V is
the set of call frame identifiers, and (x, y) ∈ E iff x directly precedes y on
the call stack during runtime. The function name of call frame x is given by
a mapping N : V → A∗ and the cost of executing frame x (excluding called
functions) is given by c0 : V → R.

How do we determine a call graph Gt = (Vt, Et), and cost functions
ci, ct, such that ci(f) gives the total amount of time spent in function f ,
excluding called functions, and ct(f) yields the total runtime of f , including
called functions?

Basic definitions

For a given graph G, let functions pG and sG denote the set of predecessors
and successors in G:

pG(x) = { y | (y, x) ∈ E }, sG(x) = { y | (x, y) ∈ E } .

Since G0 is a tree, we have |pG0(x)| ≤ 1 for all x ∈ V and no path p =
p1, . . . , pn exists with p1 = pn, where (pi, pi+1) ∈ E for i ∈ {1, . . . , n−1}.

The total cost c(x) of frame x can be defined as

c(x) = c0(x) +
∑

y∈sG0
(x)

c(y) .

Note that c is well defined since G0 is acyclic, and can be computed in linear
time, i.e. O(|V |+ |E|).

We can also easily compute the relative cost cr(x) = c(x)/c(r) ∗ 100 of a
given call frame, where r is the root of G0, i.e. pG0(r) = ∅.

1

Computing the call graph

The call graph Gt = (Vt, Et) is now obtained by merging nodes of the call
tree with identical names. Define an equivalence relation ≈ on V using the
function name mapping f :

x ≈ y ⇐⇒ N(x) = N(y) .

Let [x]≈ denote the equivalence class of x ∈ V w.r.t. ≈, i.e.

[x]≈ = { y | x ≈ y } .

Since there is exactly on equivalence class for a given function name N(x),
we can identify N(x) with [x]≈. Then Gt = (Vt, Et) is given as

Vt = {N(x) | x ∈ V } and Et = { (N(x),N(y) | (x, y) ∈ E } .

Cost functions ci and ct are defined as

ci(N(x)) =
∑

y∈[x]≈

c0(y) , ct(N(x)) =
∑

y∈MinE([x]≈)

c(y) .

where MinE(X) = {x ∈ X | ¬∃ y ∈ X : (y, x) ∈ E+} and E+ is the
transitive closure of E.

Displaying the call graph as a tree

Visualizing the call graph Gt on screen as a real graph would use enormous
amounts of screen estate and would be very cumbersome to manipulate for
the end user. We therefore propose a tree display as follows:

For each function f there will be |pGt(f)| nodes in the display tree GT =
(VT , ET). One of them, let’s call it master node of f (m(f)), will have child
nodes for all functions called by f , the other nodes will just link to the
master node (otherwise we would not get a tree). For each function f we
will have nodes fg1 , . . . , fgn , where g1, . . . , gn are the callers of f . If f has no
callers (is called on top level), we will have just one node named f . Thus,

VT = { fg | (g, f) ∈ Et } ∪ { f | pGt(f) = ∅ }

and

ET = { (m(g), fg) | (g, f) ∈ Et } .

It is easy to see that GT is indeed a graph. The big question is of course:
given function name f , which will be the master node of f? For top level
functions, we have obviously m(f) = f . For the remaining functions, the
choice is less obvious. One possible approach is to use the contribution of

2

f ’s callers to the total program run time as an oracle and resolve ties using
lexicographic ordering of function names. Hence,

m(f) =

{
f if pGt(f) = ∅,
max<{ (ct(g), g) | fg ∈ VT } otherwise.

Relation < is the usual strict ordering on tuples, defined as

(a, b) < (a′, b′) ⇔ a < a′ ∨ (a = a′ ∧ b < b′) .

Implementation notes

Gt can be constructed in expected linear time over the size of G0; i.e. in
O(|V | + |E|) steps, if we implement an expected O(1) lookup routine for
testing whether N(x) has N(y) as a successor (predecessor) in Gt. This can
be done e.g., by using hashes to store the successors and predecessors of a
node in VT .

Computation of ci is obviously linear and ct is also linear if MinE can be
computed in linear time. For the computation of MinE we simply traverse
the tree in preorder, passing along a hash of function names that occured
so far along the path. Then x is minimal, if N(x) is not in the hash. If it is,
we add it to the hash and traverse the child nodes with the modified hash.
If it is not minimal, then we traverse the childs with the unmodified hash.

Finally, GT can be constructed from Gt in O(|Vt|+ |Et|) steps.

3

