Computing Runtime Attributed Call Graphs and Displaying Call Graphs as Trees

Stefan Kaes
(c) 2005 by the Author

Version 0.4

The problem

Suppose we are given a call tree of a program as a graph $G_{0}=(V, E) . V$ is the set of call frame identifiers, and $(x, y) \in E$ iff x directly precedes y on the call stack during runtime. The function name of call frame x is given by a mapping $\mathrm{N}: V \rightarrow A^{*}$ and the cost of executing frame x (excluding called functions) is given by $c_{0}: V \rightarrow \mathbb{R}$.

How do we determine a call graph $G_{t}=\left(V_{t}, E_{t}\right)$, and cost functions c_{i}, c_{t}, such that $c_{i}(f)$ gives the total amount of time spent in function f, excluding called functions, and $c_{t}(f)$ yields the total runtime of f, including called functions?

Basic definitions

For a given graph G, let functions p_{G} and s_{G} denote the set of predecessors and successors in G :

$$
p_{G}(x)=\{y \mid(y, x) \in E\}, \quad s_{G}(x)=\{y \mid(x, y) \in E\}
$$

Since G_{0} is a tree, we have $\left|p_{G_{0}}(x)\right| \leq 1$ for all $x \in V$ and no path $p=$ p_{1}, \ldots, p_{n} exists with $p_{1}=p_{n}$, where $\left(p_{i}, p_{i+1}\right) \in E$ for $i \in\{1, \ldots, n-1\}$.

The total cost $c(x)$ of frame x can be defined as

$$
c(x)=c_{0}(x)+\sum_{y \in s_{G_{0}}(x)} c(y)
$$

Note that c is well defined since G_{0} is acyclic, and can be computed in linear time, i.e. $O(|V|+|E|)$.

We can also easily compute the relative cost $c_{r}(x)=c(x) / c(r) * 100$ of a given call frame, where r is the root of G_{0}, i.e. $p_{G_{0}}(r)=\emptyset$.

Computing the call graph

The call graph $G_{t}=\left(V_{t}, E_{t}\right)$ is now obtained by merging nodes of the call tree with identical names. Define an equivalence relation \approx on V using the function name mapping f :

$$
x \approx y \Longleftrightarrow \mathrm{~N}(x)=\mathrm{N}(y) .
$$

Let $[x] \approx$ denote the equivalence class of $x \in V$ w.r.t. \approx, i.e.

$$
[x]_{\approx}=\{y \mid x \approx y\} .
$$

Since there is exactly on equivalence class for a given function name $\mathrm{N}(x)$, we can identify $\mathrm{N}(x)$ with $[x]_{\approx}$. Then $G_{t}=\left(V_{t}, E_{t}\right)$ is given as

$$
V_{t}=\{\mathrm{N}(x) \mid x \in V\} \quad \text { and } \quad E_{t}=\{(\mathrm{N}(x), \mathrm{N}(y) \mid(x, y) \in E\} .
$$

Cost functions c_{i} and c_{t} are defined as

$$
c_{i}(\mathrm{~N}(x))=\sum_{y \in[x] \pi} c_{0}(y), \quad c_{t}(\mathrm{~N}(x))=\sum_{y \in \operatorname{Min}_{E}([x] \approx)} c(y) .
$$

where $\operatorname{Min}_{E}(X)=\left\{x \in X \mid \neg \exists y \in X:(y, x) \in E^{+}\right\}$and E^{+}is the transitive closure of E.

Displaying the call graph as a tree

Visualizing the call graph G_{t} on screen as a real graph would use enormous amounts of screen estate and would be very cumbersome to manipulate for the end user. We therefore propose a tree display as follows:

For each function f there will be $\left|p_{G_{t}}(f)\right|$ nodes in the display tree $G_{T}=$ $\left(V_{T}, E_{T}\right)$. One of them, let's call it master node of $f(m(f))$, will have child nodes for all functions called by f, the other nodes will just link to the master node (otherwise we would not get a tree). For each function f we will have nodes $f_{g_{1}}, \ldots, f_{g_{n}}$, where g_{1}, \ldots, g_{n} are the callers of f. If f has no callers (is called on top level), we will have just one node named f. Thus,

$$
V_{T}=\left\{f_{g} \mid(g, f) \in E_{t}\right\} \cup\left\{f \mid p_{G_{t}}(f)=\emptyset\right\}
$$

and

$$
E_{T}=\left\{\left(m(g), f_{g}\right) \mid(g, f) \in E_{t}\right\}
$$

It is easy to see that G_{T} is indeed a graph. The big question is of course: given function name f, which will be the master node of f ? For top level functions, we have obviously $m(f)=f$. For the remaining functions, the choice is less obvious. One possible approach is to use the contribution of
f's callers to the total program run time as an oracle and resolve ties using lexicographic ordering of function names. Hence,

$$
m(f)= \begin{cases}f & \text { if } p_{G_{t}}(f)=\emptyset \\ \max _{<}\left\{\left(c_{t}(g), g\right) \mid f_{g} \in V_{T}\right\} & \text { otherwise }\end{cases}
$$

Relation $<$ is the usual strict ordering on tuples, defined as

$$
(a, b)<\left(a^{\prime}, b^{\prime}\right) \Leftrightarrow a<a^{\prime} \vee\left(a=a^{\prime} \wedge b<b^{\prime}\right)
$$

Implementation notes

G_{t} can be constructed in expected linear time over the size of G_{0}; i.e. in $O(|V|+|E|)$ steps, if we implement an expected $O(1)$ lookup routine for testing whether $\mathrm{N}(x)$ has $\mathrm{N}(y)$ as a successor (predecessor) in G_{t}. This can be done e.g., by using hashes to store the successors and predecessors of a node in V_{T}.

Computation of c_{i} is obviously linear and c_{t} is also linear if Min_{E} can be computed in linear time. For the computation of Min_{E} we simply traverse the tree in preorder, passing along a hash of function names that occured so far along the path. Then x is minimal, if $\mathrm{N}(x)$ is not in the hash. If it is, we add it to the hash and traverse the child nodes with the modified hash. If it is not minimal, then we traverse the childs with the unmodified hash.

Finally, G_{T} can be constructed from G_{t} in $O\left(\left|V_{t}\right|+\left|E_{t}\right|\right)$ steps.

