
0/58

JJ
II
J
I

Back

Close

Performance Rails
Writing Rails applications with sustainable performance
Ruby en Rails 2006

Stefan Kaes
www.railsexpress.de

skaes@gmx.net

http://www.railsexpress.de
mailto:skaes@gmx.net

1/58

JJ
II
J
I

Back

Close

The most boring talk, ever!

No DHTML visual effects!

No fancy AJAX programming!

No Java bashing!

No funny stories!

I won’t even mention George!

2/58

JJ
II
J
I

Back

Close

What you will get

Lots of numbers!

Shameless promotion of my railsbench
package!

Programming/engineering advice you might
not want to hear

And I will even tell you to use Windows for Rails performance work!

http://railsbench.rubyforge.org

3/58

JJ
II
J
I

Back

Close

How I got started on Rails
Cooking is one of my hobbies.

• wrote Perl screen scraper to collect recipes

• produced lots of static HTML and a PDF book

• #recipes > 1.000 =⇒ unmanagable!

Needed: search, comments, favorites, menues, sharing with friends,
access control =⇒ a web application

But: no interest (and justification) in writing another boring old web
app using boring (PHP) or complicated (Java) web technology, so
. . . project put to rest.

Enter: Hackers and Painters, /., Rails movies, Ruby.

refreshing, interesting ⇒ Fun!

learn something new (Ruby) ⇒ Justification!

4/58

JJ
II
J
I

Back

Close

Knuzzlipuzzli Demo

http://railsexpress.de/knzlpzl

5/58

JJ
II
J
I

Back

Close

Focus of this Talk
Rails performance benchmarking and tuning

• session container performance

• caching

• writing efficient Ruby/Rails code

• benchmarking

• tuning Ruby’s garbage collector

6/58

JJ
II
J
I

Back

Close

Scaling Rails Apps
DHH says:

”Scaling Rails has been solved”

Don’t get fooled by this statement.

David likes to make provoking statements ;-)

It only means, ”it can be done” because of Rails’

Shared Nothing Architecture

In practice, scaling is a very complicated issue.

Rails is only a small part of the scaling problem.

I suggest to read Jason Hoffman’s slides on scaling Rails:

http://www.scalewithrails.com/downloads/ScaleWithRails-April2006.pdf

Or attend the workshop in Frankfurt (25.10/26.10)

http://www.scalewithrails.com/downloads/ScaleWithRails-April2006.pdf
http://www.scalewithrails.com

7/58

JJ
II
J
I

Back

Close

A Scaling Strategy
1. Start simple!

2. 1 box, running everything, 1 FCGI listener.

3. Measure.

4. Adjust configuration, adding caching components, more listeners,
more machines, etc.

5. Goto Step 3

This is a never ending, tedious process.

If you want to become the next Google ;-)

8/58

JJ
II
J
I

Back

Close

Rails Mailing List Quotes w.r.t.
Performance Questions
• Don’t worry, it’s fast enough for us, so it will be fast enough for

you.

• Look at our successful applications in production, with
thousands of users.

• Premature optimization is evil.

• Just throw hardware at it.

These are not my answers!

• If your app can only handle 5 requests per second, you’ve done
something wrong, which can’t be rectified by JTHAI.

• And you probably want to know how to improve it.

9/58

JJ
II
J
I

Back

Close

On Performance Tuning
• Trying to improve performance without measuring is foolish.

• Trying to improve performance 1 week before you go live won’t
work.

• If your app’s design has an inherent performance problem, you
will need a costly redesign.

• Planning ahead for an established performance goal will help
you.
(if you have only ten visitors per hour, performance is probably not a problem
for you)

• There’s no need to optimize every page of your web app.

• Focus on your app’s hot spots (frequently visited pages), and
measure continuously during development.

• railsbench can help you with performance measuring and
regression testing.

http://railsbench.rubyforge.org

10/58

JJ
II
J
I

Back

Close

Performance Parameters

Latency
How fast can you answer a request?

Throughput
How many requests can you process per second?

Utilization
Are your servers/components idle most of the time?

Cost Efficiency
Performance per unit cost

Compute mean, min, max, standard deviation (if applicable)

Standard deviation will tell you how reliable your data is.

11/58

JJ
II
J
I

Back

Close

Rails Request Cycle

12/58

JJ
II
J
I

Back

Close

Top Rails Performance Problems
Depends on who you ask, but these are my favorites:

• slow helper methods

• complicated routes

• using associations when you don’t have to

• retrieving too much from DB

• slow session storage

DB performance is usually not a bottleneck!

Processing ActiveRecord objects after retrieval is the more
expensive part.

13/58

JJ
II
J
I

Back

Close

Available Session Containers
In Memory

Fastest, but you will lose all sessions on app server crash/restart. Restricted to
1 app server process. Doesn’t scale.

File System
Easy setup. One file (below /tmp) for each session. Scales by using NFS or
NAS (beware 10K active sessions!). Slower than

Database/ActiveRecordStore
Easy setup (comes with Rails distribution). Much slower than

Database/SQLSessionStore
Uses ARStore session table format. But does all processing using raw SQL
queries. Needs tweaking if you want additional fields on session entries. setup

memcached
Slightly faster than SQLSessionStore. Presumably scales best. Very tunable.
Automatic session cleaning. Harder to obtain statistics. setup

DrbStore
Can be used on platforms where memcached is not available. Slower than
memcached. No automatic expiry (but could be added quickly).

14/58

JJ
II
J
I

Back

Close

ActiveRecordStore vs.
SQLSessionStore
page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
1: 2.80733 1.14600 356.2 872.6 2.81 1.15 2.45
2: 3.91667 1.33867 255.3 747.0 3.92 1.34 2.93
3: 5.21367 1.94300 191.8 514.7 5.21 1.94 2.68
4: 5.65633 2.41167 176.8 414.7 5.66 2.41 2.35
5: 11.64600 7.39600 85.9 135.2 11.65 7.40 1.57
6: 16.83333 15.10933 59.4 66.2 16.83 15.11 1.11
7: 17.09333 15.52067 58.5 64.4 17.09 15.52 1.10
8: 8.19267 6.78133 122.1 147.5 8.19 6.78 1.21

GC: c1 real c2 real c1 #gc c2 #gc c1 gc% c2 gc% c1/c2
3.83667 2.76133 25.0 20.0 5.38 5.35 1.25

Additional details regarding SQLSessionStore and memcached can be found here:

http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store

http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-
session-storage

http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage

15/58

JJ
II
J
I

Back

Close

railsbench

Demo

• Downloadable from http://rubyforge.org/projects/railsbench

• I recommend the README file. Web doc is somewhat out of date.

http://rubyforge.org/projects/railsbench
http://rubyforge.org/cgi-bin/viewcvs.cgi/*checkout*/railsbench/README?root=railsbench&rev=1.10

16/58

JJ
II
J
I

Back

Close

Cachable Elements
Pages

Fastest. Complete pages are stored on file system. Web server
bypasses app server for rendering. Scales through NFS or NAS.
Problematic if your app requires login.

Actions
Second fastest option. Caches the result of invoking actions on
controllers. User login id can be used as part of the storage key.

Fragments
Very useful for caching small fragments (hence the name) of
HTML produced during request processing. Can be made user
aware.

Action caching is just a special case of fragment caching.

Several storage containers are available for fragment caching.

17/58

JJ
II
J
I

Back

Close

Storage Options for Fragment Caching
In Memory

Blazing speed! If your app is running fast enough with 1 FCGI
process, go for it!

File System
Reasonably fast. Expiring fragments using regular expressions
for keys is slow.

DrbStore
Comparable to FileStore. Expiring fragments is faster.

memcached
Faster and more scalable than DrbStore. Doesn’t support
expiring by regular expression.

The size of the actual code in Rails to handle caching is small.

It would be easy to extend so that all of the above options can be
used concurrently.

18/58

JJ
II
J
I

Back

Close

Use Strings as Fragment Cache Keys
Route generation can be excruciatingly slow.

Avoid using URL hashes as cache keys.

1 <% cache :action => ”my action”, :user => session[:user] do %>
2 ...
3 <% end %>

This is much faster:

1 <% cache ”#{@controller}/my action/#{session[:user]}” do %>
2 ...
3 <% end %>

Also gives you more control over efficient expiry using regular
expressions.

19/58

JJ
II
J
I

Back

Close

ActionController Issues

Components

I suggest to avoid components. I haven’t found any good use for them, yet.

Each embedded component will be handled using a fresh request cycle.

Can always be replaced by helper methods and partials.

Filters

Don’t use too many of them.

If you can combine several related filters into one, do it.

If you are using components, make sure you don’t rerun your filters n times. Better
pass along context information explicitely.

You can use the skip_filter method for this. It will be evaluated at class load
time, so no runtime overhead during request processing.

20/58

JJ
II
J
I

Back

Close

ActionView Issues

Instance variables

For each request, one controller instance and one view instance will
be instantiated.

Instance variables created during controller processing will be
transfered to the view instance (using instance_variable_get
and instance_variable_set)

So: avoid creating instance variables in controller actions, which will
not be used in the view (not always possible, see filters).

21/58

JJ
II
J
I

Back

Close

Internal Render API
At one point in time DHH decided he liked hashes and symbols soo
much, that he redesigned the render API.

1 render text ”Hello world!”
2 render action ”special”

became

1 render :text => ”Hello world!”
2 render :action => ”special”

In the process, rendering performance was impacted (esp. for
partials).

Thanks to my intervention, the old methods are still available.

You can still use them.

22/58

JJ
II
J
I

Back

Close

Slow Helper Methods
Consider:

1 pluralize (n, ’post’)

This will create a new Inflector instance, and try to derive the correct plural for ’post’.
This is expensive. Just do

1 pluralize (n, ’post’ , ’posts’)

Consider:

1 <%= end form tag %>

vs.

1 </form>

How’s the first one better?

23/58

JJ
II
J
I

Back

Close

textilize
Really, really, slow.

If you’re textilizing database fields, consider caching them, some
place.

• I’ve analyzed an application, where 30% CPU was spent on textilizing. Another
30% were spent on GC. And about 10% on URL recognition.

• Caching the formatted fields in the DB eliminated the textilize overhead
completely.

Same trick can be applied to all kinds of formatting jobs!

As pointed out by a member of the audience, there is/was a plugin which you could use.

http://www.agilewebdevelopment.com/plugins/show/10

24/58

JJ
II
J
I

Back

Close

link to and url for
Lo and behold: the highly touted superstars of Rails template
helpers are the bad guys (w.r.t. performance)

1 <%= link to ”look here for something interesting” ,
2 { :controller => ”recipe”, :action => edit, :id => @recipe.id },
3 { :class => ” edit link ” } %>

• both hash arguments undergo heavy massage in the Rails bowel: symbolizing,
html escaping, sorting, validation

• the routing module determines the shortest possible route to the controller,
action and id ⇒ every single route specified in config/routes.rb must be
examined.

A much more efficient way to write this is:

<a href="/recipe/edit/<%=#{recipe.id}%>" class="edit_link">
look here for something interesting

How much more efficient?

25/58

JJ
II
J
I

Back

Close

The Difference link to makes
page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
1: 1.38033 1.36467 724.5 732.8 1.38 1.36 1.01
2: 2.21867 2.32833 450.7 429.5 2.22 2.33 0.95
3: 2.90067 2.92733 344.7 341.6 2.90 2.93 0.99
4: 2.87467 2.77600 347.9 360.2 2.87 2.78 1.04
5: 11.10467 7.63033 90.1 131.1 11.10 7.63 1.46
6: 12.47900 6.38567 80.1 156.6 12.48 6.39 1.95
7: 12.31767 6.46900 81.2 154.6 12.32 6.47 1.90
8: 11.72433 6.27067 85.3 159.5 11.72 6.27 1.87

GC: c1 real c2 real c1 #gc c2 #gc c1 gc% c2 gc% c1/c2
6.48867 3.16600 43.0 23.0 11.38 8.76 1.87

Notes:

• the relation c1/c2 depends on the hardware used. This seems to indicate that
the quality of the Ruby implementation / OS memory management has a
significant influence on relative performance.

• you probably shouldn’t code every link_to as above. just use this method on
pages with a large number of links.

26/58

JJ
II
J
I

Back

Close

Ruby Performance Validator

Demo

• will tell you where the time is spent in your app

• railsbench package supports running defined benchmarks in RPVL

• need to buy a licence if you want to use it (30 day trial version available)

• more info: Software Verifaction Ltd.

http://www.softwareverify.com/rubyPerformanceValidator/index.html

27/58

JJ
II
J
I

Back

Close

ActiveRecord Issues
Accessing fields via association proxies is slow.

• use piggy backing for has_one relations.

Field values are retrieved from the DB as strings.

Type conversion happens on each access.

• cache converted values, if you use them several times during
one request.

Sometimes you need only partial objects:

• use the :select parameter of find to retrieve ony fields used
for display.

http://railsexpress.de/blog/articles/2005/11/06/the-case-for-piggy-backed-attributes

28/58

JJ
II
J
I

Back

Close

Ruby’s interpreter is
sloooow!

29/58

JJ
II
J
I

Back

Close

Ruby’s Interpreter

Deeply rooted in 60’s technology:

• no byte code, no JIT, interprets ASTs directly

• doesn’t perform any code optimization at compile time

• GC performance is erratic (more on that later)

But it doesn’t matter that much, because

Rails scales easily (in principle, and because David said so
;-)),

The interesting questions are:

• how well can you make it scale?
• how hard is it?
• how much hardware do you need?

30/58

JJ
II
J
I

Back

Close

Complexity of Ruby Language Elements
Local Variable access: O(1)

index into array, computed at parse time

Instance Variable Access: expected O(1)
hash access by literal

Method Call: expected O(1)

• hash access to determine literal value ("f"⇒ :f)
• method search along inheritance chain
• hash accesses to get the method
• there’s also a method cache (which helps a bit)
• construction of argument array on heap (unless attr reader)

Recommendation:

• don’t add method abstractions needlessly

• use attr accessors as external interfaces only

• use local variables to short circuit repeated hash accesses

31/58

JJ
II
J
I

Back

Close

Efficient Ruby Coding

Warning: Don’t run through your code and
apply the optimizations to follow
everywhere.

Remember: this is all about hot spots!

32/58

JJ
II
J
I

Back

Close

Micro Optimization

Avoid testing for nil using .nil?

1 logger. info ”Prepare to take off ” unless logger. nil ?

vs.

1 logger. info ”Prepare to take off ” if logger

• Faster, smaller code, smaller AST, fewer method calls, less GC.

• Can’t be applied if logger can take on value false (see here)

Don’t use return unless you need to abort the current method or block

1 return expr
2 end

can be simplified to

1 expr
2 end

Note: methods and blocks implicitely return the value of the last evaluated expr.

33/58

JJ
II
J
I

Back

Close

Avoiding Repeated Hash Access
1 def submit to remote(name, value, options = {})
2 options[:with] ||= ’Form.serialize(this .form)’
3 options[:html] ||= {}
4 options[:html][:type] = ’button’
5 options[:html][:onclick] = ”#{remote function(options)}; return false ; ”
6 options[:html][:name] = name
7 options[:html][:value] = value
8 tag(” input” , options[:html], false)
9 end

This code is both simpler and faster:

1 def submit to remote(name, value, options = {})
2 options[:with] ||= ’Form.serialize(this .form)’
3 html = (options[:html] ||= {})
4 html[:type] = ’button’
5 html[:onclick] = ”#{remote function(options)}; return false ; ”
6 html[:name] = name
7 html[:value] = value
8 tag(” input” , html, false)
9 end

34/58

JJ
II
J
I

Back

Close

Caching Data in Instance Variables
If you need the same data structure repeatedly during request
processing, consider caching on controller (or view) instance level.

Turn

1 def capital letters
2 (”A” .. ”Z”). to a
3 end

into

1 def capital letters
2 @capital letters ||= (”A” .. ”Z”). to a
3 end

35/58

JJ
II
J
I

Back

Close

Caching Data in Class Variables
If your data has a reasonable size to keep around permanently (i.e.
doesn’t slow down GC a lot) and is used on a hot application path,
consider caching on class level.

Turn

1 def capital letters
2 (”A” .. ”Z”). to a
3 end

into

1 @@capital letters = (”A” .. ”Z”). to a
2

3 def capital letters
4 @@capital letters
5 end

Note: the cached value could be a query from the database
Example: guest user.

36/58

JJ
II
J
I

Back

Close

Coding Variable Caching Efficiently
Bad:

1 def actions
2 unless @actions
3 # do something complicated and costly to determine action’s value
4 @actions = expr
5 end
6 @actions
7 end

Better:

1 def actions
2 @actions ||=
3 begin
4 # do something complicated and costly to determine action’s value
5 expr
6 end
7 end

37/58

JJ
II
J
I

Back

Close

Defining Constants vs. Inlining
Less than optimal:

1 def validate find options (options)
2 options.assert valid keys(:conditions , :include , :joins , :limit , :offset ,
3 :order , :select , :readonly, :group, :from)
4 end

Better:

1 VALID FIND OPTIONS = [
2 :conditions , :include , :joins , :limit ,
3 :offset , :order , :select , :readonly, :group, :from]
4

5 def validate find options (options)
6 options.assert valid keys(VALID FIND OPTIONS)
7 end

Faster and much easier to customize.

38/58

JJ
II
J
I

Back

Close

Using Local Variables Effectively
Consider:

1 sql << ” GROUP BY #{options[:group]} ” if options[:group]

vs.

1 if opts = options[:group]
2 sql << ” GROUP BY #{opts} ”
3 end

or

1 (opts = options[:group]) && (sql << ” GROUP BY #{opts} ”)

Alas,

1 sql << ” GROUP BY #{opts} ” if opts = options[:group]

won’t work, because matz refused to implement it (at least last time I asked for it).

http://blade.nagaokaut.ac.jp/cgi-bin/vframe.rb/ruby/ruby-core/6684?6507-6830

39/58

JJ
II
J
I

Back

Close

Beware Variable Capture When Defining
Methods
Defining a new method passing a block, captures the defining environment.

This can cause memory leaks.

1 def define attr method(name, value=nil, &block)
2 sing = class << self; self ; end
3 sing.send :alias method, ” original #{name}”, name
4 if block given?
5 sing.send :define method, name, &block
6 else
7 # use eval instead of a block to work around a memory leak in dev
8 # mode in fcgi
9 sing.class eval ”def #{name}; #{value.to s.inspect}; end”

10 end
11 end

It’s usually preferable to use eval instead of define_method

40/58

JJ
II
J
I

Back

Close

Don’t be Stupid w.r.t. Logging
Don’t forget to set the production log level to something other than
DEBUG.

Don’t log to log level INFO what should be logged to DEBUG.

This is a bad idiom:

1 logger.debug ”args: #{hash.keys.sort.join (’ ’)}” if logger

hash.keys.sort.join(’ ’) will be evaluated and the arg string will be
constructed, even if logger.level == ERROR.

Instead do this:

1 logger.debug ”args: #{hash.keys.sort.join (’ ’)}” if logger && logger.debug?

41/58

JJ
II
J
I

Back

Close

Ruby’s GC collects and
is garbage!

42/58

JJ
II
J
I

Back

Close

Ruby’s Memory Management
• designed for batch scripts, not long running server apps

• tries to minimize memory usage

• simple mark and sweep algorithm

• uses malloc to manage contiguous blocks of Ruby objects (Ruby
heap)

• complex data structures:

– only references to C structs are stored on Ruby heap
– comprises strings, arrays, hashes, local variable maps,

scopes, etc.

• eases writing C extensions

Current C interface makes it hard to implement generational GC

=⇒ unlikely to get generational GC in the near future

Maybe Ruby2 will have it (but Ruby2 is a bit like Perl6)

43/58

JJ
II
J
I

Back

Close

Why Ruby GC is suboptimal for Rails
ASTs are stored on the Ruby heap and will be processed on each
collection

usually the biggest part of non garbage for Rails apps

Sweep phase depends on size of heap, not size of non garbage

can’t increase the heap size above certain limits

More heap gets added, if

size of freelist after collection < FREE_MIN

a constant defined in gc.c as 4096

200.000 heap slots are a good lower bound for live data

for typical Rails heaps, 4096 is way too small!

Note: improving GC performance increases throughput, not latency !
(unless you have a collection on each request)

44/58

JJ
II
J
I

Back

Close

Improving GC Performance
As a first attempt, I caused the addition of the possibilty to control
GC from the Rails dispatcher:

1 # excerpt from dispatch. fcgi
2 RailsFCGIHandler.process! nil, 50

Will disable Ruby GC and call GC.start after 50 requests have been
processed

However, small requests and large requests are treated equally

• heap could grow too large

• performance for small pages suffers

• Ruby will still deallocate heap blocks if empty after GC

Recommendation:

Patch Ruby’s garbage collector!

45/58

JJ
II
J
I

Back

Close

Patching Ruby’s Garbage Collector
Download latest railsbench package. Patch Ruby using file
rubygc.patch, recompile and reinstall binaries and docs.

You can then influence GC behavior by setting environment
variables:

RUBY HEAP MIN SLOTS
initial heap size in number of slots used (default 10000)

RUBY HEAP FREE MIN
number of free heap slots that should be available after GC (default 4096)

RUBY GC MALLOC LIMIT
amount of C data structures (in bytes) which can be allocated without triggering
GC (default 8000000)

Recommended values to start with:

RUBY_HEAP_MIN_SLOTS = 600000
RUBY_GC_MALLOC_LIMIT = 60000000
RUBY_HEAP_FREE_MIN = 100000

Running the previous benchmark again, gives much nicer GC stats

46/58

JJ
II
J
I

Back

Close

Measuring GC Performance Using
railsbench

perf_run_gc n "-bm=benchmark . . ." [data f ile]

runs named benchmark, producing a raw data file

perf_times_gc data f ile

prints a summary for data in raw data file

47/58

JJ
II
J
I

Back

Close

Which Database Package?
Rails uses an Application Database.

Contrast this with an Integration Database.

Choice of DB vendor is largely a metter of taste. Or external
restrictions imposed on your project :-(

But: Mysql and Postgresql have best support in the Rails
community. Core team uses both.

http://martinfowler.com/bliki/ApplicationDatabase.html
http://martinfowler.com/bliki/IntegrationDatabase.html

48/58

JJ
II
J
I

Back

Close

Database Performance
Mysql outperforms Postgres (even without query caching)

page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
1: 2.51567 1.14067 397.5 876.7 2.52 1.14 2.21
2: 3.33300 1.35933 300.0 735.7 3.33 1.36 2.45
3: 2.78600 1.88567 358.9 530.3 2.79 1.89 1.48
4: 4.27167 2.67200 234.1 374.3 4.27 2.67 1.60
5: 11.91667 7.45300 83.9 134.2 11.92 7.45 1.60
6: 23.40567 15.07300 42.7 66.3 23.41 15.07 1.55
7: 22.91667 15.54667 43.6 64.3 22.92 15.55 1.47
8: 10.68733 6.79167 93.6 147.2 10.69 6.79 1.57

GC: c1 real c2 real c1 #gc c2 #gc c1 gc% c2 gc% c1/c2
2.44833 2.60367 14.0 18.0 2.99 5.01 0.78

Don’t use Postgres for session storage!

Use memcached or a separate Mysql session DB using MyISAM
tables:

No need for transaction support on session data!

49/58

JJ
II
J
I

Back

Close

Mysql Query Caching
Greatly speeds up performance of complex queries, if

• there’s no index to use

• query involves complex joins

Mysql 5.0 implements views using query caching, so you’ll get it
anyway.

Query caching will slow down session retrieval slightly.

But the majority of web apps read more than write (to the DB).

For apps of this type, I recommend turning it on.

50/58

JJ
II
J
I

Back

Close

End
Thanks very much for your attention.

If you appreciated this session, you might consider buying my book,
available around November 2006 from Addison Wesley, as part of
the soon to be announced ”Professional Ruby” series.

If you’re doing commercial Rails apps, I’m also available for
consulting.

Questions?

51/58

JJ
II
J
I

Back

Close

Shared Nothing Architecture
App servers rely on a (centralized) external resource to store
application state.

The state is retrieved from and stored back to the external resource
per request.

J2EE parlance: Stateless Session Bean

52/58

JJ
II
J
I

Back

Close

Configuring Rails to use
SQLSessionStore with Mysql/Postgres
Download latest version from my web site

Put Ruby source under lib directory.
Adjust environment.rb:

1 require ’ sql session store ’
2 ActionController::CgiRequest::DEFAULT SESSION OPTIONS.update(
3 :database manager => SQLSessionStore)
4

5 require ’mysql session’
6 SQLSessionStore.session class = MysqlSession

For Postgres, use
1 require ’postgresql session’
2 SQLSessionStore.session class = PostgresqlSession

Note: requires Postgres 8.1!

http://railsexpress.de/downloads/sql_session_store_0.2.tar.gz

53/58

JJ
II
J
I

Back

Close

memcached Session Storage Setup
Download memcache-client: http://rubyforge.org/frs/?group id=1266

1 require ’memcache’
2 require ’memcache util’
3

4 # memcache defaults, environments may override these settings
5 unless defined? MEMCACHE OPTIONS then
6 MEMCACHE OPTIONS = {
7 :debug => false,
8 :namespace => ’my name space’,
9 :readonly => false

10 }
11 end
12

13 # memcache configuration
14 unless defined? MEMCACHE CONFIG then
15 File .open ”#{RAILS ROOT}/config/memcache.yml” do |memcache|
16 MEMCACHE CONFIG = YAML ::load memcache
17 end
18 end

http://rubyforge.org/frs/?group_id=1266

54/58

JJ
II
J
I

Back

Close

1 # Connect to memcache
2 unless defined? CACHE then
3 CACHE = MemCache.new MEMCACHE OPTIONS
4 CACHE.servers = MEMCACHE CONFIG[RAILS ENV]
5 end
6

7 # Configure the session manager to use memcache data store.
8 ActionController::CgiRequest::DEFAULT SESSION OPTIONS.update(
9 :database manager => CGI::Session::MemCacheStore,

10 :cache => CACHE, :expires => 3600 ∗ 12)

YAML file:

1 production:
2 − localhost:11211
3

4 development:
5 − localhost:11211
6

7 benchmarking:
8 − localhost:11211

Don’t forget to start the server: memcached& Session Container Overview

55/58

JJ
II
J
I

Back

Close

Compile Time Optimizations
These are usually taken for granted in modern interpreters:

• method inlining

• strength reduction

• constant propagation

• common subexpression elimination

• loop invariant detection

• loop unrolling

You don’t have any of these in current Ruby interpreter.

=⇒
Performance aware programming can increase performance
significantly!

56/58

JJ
II
J
I

Back

Close

Booleans and Conditionals
1 nil || v v
2 false || v v
3 other || v other
4

5 nil && v false
6 false && v false
7 other && v v
8

9 nil . nil ? true
10 other. nil ? false
11

12 if nil then e1 else e2 e2
13 if false then e1 else e2 e2
14 if other then e1 else e2 e1

57/58

JJ
II
J
I

Back

Close

GC Statistics (unpatched GC)

GC data file: c:/home/skaes/perfdata/xp/perf_runworld.gc.txt

collections : 66
garbage total : 1532476
gc time total (sec) : 1.86
garbage per request : 2554.13
requests per collection: 9.09

mean stddev% min max
gc time(ms): 28.08 22.0 15.00 32.00
heap slots : 223696.00 0.0 223696.00 223696.00
live : 200429.88 0.4 199298.00 201994.00
freed : 23266.12 3.3 21702.00 24398.00
freelist : 0.00 0.0 0.00 0.00

58/58

JJ
II
J
I

Back

Close

GC Statistics (patched GC)

GC data file: c:/home/skaes/perfdata/xp/perf_runworld.gc.txt

collections : 5
garbage total : 1639636
gc time total (sec) : 0.64
garbage per request : 2732.73
requests per collection: 120.00

mean stddev% min max
gc time(ms): 148.75 6.0 141.00 157.00
heap slots : 600000.00 0.0 600000.00 600000.00
live : 201288.00 0.2 200773.00 201669.00
freed : 398712.00 0.1 398331.00 399227.00
freelist : 0.00 0.0 0.00 0.00

	The most boring talk, ever!
	What you will get
	How I got started on Rails
	Focus of this Talk
	Scaling Rails Apps
	A Scaling Strategy
	Rails Mailing List Quotes w.r.t. Performance Questions
	On Performance Tuning
	Performance Parameters
	Rails Request Cycle
	Top Rails Performance Problems
	Available Session Containers
	ActiveRecordStore vs. SQLSessionStore
	railsbench
	Cachable Elements
	Storage Options for Fragment Caching
	Use Strings as Fragment Cache Keys
	ActionController Issues
	ActionView Issues
	Internal Render API
	Slow Helper Methods
	textilize
	link_to and url_for
	The Difference link_to makes
	Ruby Performance Validator
	ActiveRecord Issues
	Ruby's Interpreter
	Complexity of Ruby Language Elements
	Efficient Ruby Coding
	Micro Optimization
	Avoiding Repeated Hash Access
	Caching Data in Instance Variables
	Caching Data in Class Variables
	Coding Variable Caching Efficiently
	Defining Constants vs. Inlining
	Using Local Variables Effectively
	Beware Variable Capture When Defining Methods
	Don't be Stupid w.r.t. Logging
	Ruby's Memory Management
	Why Ruby GC is suboptimal for Rails
	Improving GC Performance
	Patching Ruby's Garbage Collector
	Measuring GC Performance Using railsbench
	Which Database Package?
	Database Performance
	Mysql Query Caching
	End
	Shared Nothing Architecture
	Configuring Rails to use SQLSessionStore with Mysql/Postgres
	memcached Session Storage Setup
	Compile Time Optimizations
	Booleans and Conditionals

